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Abstract 

This document constitutes the final project report for Contract # F49620-99-C-0013 
titled Tech Sat 21 PHASED ARRA Y SIGNAL PROCESSING. The report sununarizes 
the theoretical development of time-reversal based imaging algorithms for locating 
and tracking groimd based targets from multistatic data collected from unstructured 
phased antenna arrays operating above the ionosphere. The report includes a number 
of computer simulated examples illustrating the use of the algorithms developed in the 
project. 
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1    Project Summary 
Tech Sat 21 has, as its goal, the development of a large, sparse, unstructured 3D phased array 
(Tech Sat 21 array) to be used in orbit above the ionosphere for the surveillance of earth 
based targets. The key and novel ingredients of the Tech Sat phased array system is that 
it very sparse and imstructured; i.e., the phased array elements are not rigidly supported 
and are freely orbiting (uncontrollable) in three-dimensional space. These requirements of 
the Tech Sat phased array system require that new and novel signal processing algorithms 
and methods be developed for the smrveillance tasks required of the system. The research 
described herein is directed toward developing sudb methods and algorithms for the specific 
tasks of detecting and locating (tracking) moving ground targets (MOT). 

The approadi taken in the project is based on the well-known concept of time-reversal 
imaging [1, 2, 3] which will be explained in detail in the body of the report. The objectives 
of the research were to develop the underlying mathematical and physical basis for (compu- 
tational) time-reversal imaging for the Tech Sat project and to develop and test and evaluate 
time-reversal based algorithms for MOT detection and tracking. Specific areas addressed in 
the research included: 

• An in-depth investigation of the state-of-the-art of computational time-reversal imaging 
for three-dimensional (non-planar), non-co-located and sparse phased arrays, 

• Development of methods to incorporate models of the ionosphere into the time-reversal 
based algorithms, 



• Incorporation of state-of-the-art signal processing schemes such as MUSIC^ into the 
time-reversal imaging method, 

• Development of methods to reduce the effect of clutter on time-reversal imaging, 

The major accomplishments of the project were in the development of a MUSIC algorithm 
for MGT location and the generalization of the usual and standard methods of time-reversal 
imaging to non-co-located phased array systems and to non-reciprocal background media 
such as the ionosphere. All three of these developments have or are in the process of being 
reported in the literature [4, 5, 6] and could have major impact on the Tech Sat and related 
projects. In addition to these major results a conceptual scheme for the complete data 
processing required in the project was developed and a nimiber of computer simulations 
were completed. These and other results from the project are reported in the body of the 
report. 

2    Basic Theory 
In this section we review the revamped theory of computational time reversal imaging devel- 
oped within the Tech-Sat 21 project. One of the principle goals of the Tedi-Sat project is to 
employ an orbiting set of radar antennas in a multistatic mode with the purpose of locating 
and identifying moving groimd targets (MGT's). We can idealize the satellite antenna sys- 
tem as consisting of a phased array system that interrogates a given groimd patch containing 
an MGT as illustrated^ in figiu"e 1. In our analysis we will assume a general array consisting 
of Nr receiving antenna elements and Nt transmitting elements, all of which interrogate a 
given groimd patch that contains a total of M targets. Although the envisioned Tech Sat 
system will employ co-located transmit and receive anteima elements the generalized theory 
is necessary to treat non-reciprocal propagation media (such as the ionosphere) and also al- 
lows the results obtained in the project to be employed in other Air Force appUcations (such 
as imaging of ground targets from phased array antennas deployed on unmanned aerial ve- 
hicles (UAV's)). The effective size of the ground patch is determined by the aperture of each 
antenna element (approximately a meter diameter in Tech-Sat) as well as by Doppler and 
time-gate processing. The Doppler and time-gate processing are used to reduce the effect 
of ground clutter and are required pre-processing steps for time-reversal processing to be 
effective^. We illustrate the Doppler preprocessing steps in figure 2. 

The pre-processed data (after clutter reduction) at frequency u forms aja.NrXNt matrix 
that can be expressed in the general form: 

M      . 

m=l "^ 

^Standing for MUtiple-SIgnal Classfication. 
^All figures appear at the end of the report. 
'We will not go into the details of how this processing is done since it is standard radar theory and lies 

outside of the main goals of the" research. 



by an expression of the form; 
^   0„»(r,a;) = fc2(r,w)-fc^(r,a;) (2) 

where P(r,a;) is the waven^tnber of the taxget aad fc§ the wavenumber of the background 
meS^.  We emphasize th«t the above model makes no assumpUons about the geome^ 
^ft^phase anul nor of redprocUy of the background medium. It ,s also exact withm the 
framework of scalar wave scattering theory. 

If we define the column vectors 

griT,iv) =ilG(RI.r,w).C?(R^,r,a;),--- ,G(R!^..r,a;)f (3a) 

V{r, w) = [tAi (r, w), ^2(r, w), •' • >JVt (r, w) f (3b) 

we can rewrite Eq.(l) in thei symbolic form 

K{ai)^ 5^7dV5r(r,a;)0„.(r,w)V'^(r,u) (4) 

where the superscript T sta?ids for the transpose operation and where we have used the r 
subscript on the Green function vector to denote that it corresponds to the receiver array 

The data matrbc K = I^ij is caUed the multistatic data matrix and is the key quantity 
that is employed in many inverse scattering and imaging schemes. In Diffraction tomography 
(DT) this matrbc is used in conjunction with a slant stacking algoriihiQ to generate plane wave 
data which is then input int6 a fUtered back propagation algorithm to generate an unage of 
the target (the object profiles O^). Alternatively, the multistatic matrix can be employed 
to perform time-reversal imagmg [1, 2] whidi is especially useful for locating targets that 
are smaU relative to a wavtogth, even if the targets are buried in inhomogeneous media 
whose Green functions are not precisely known. Finally, we mention that conventional SAR 
imaring does not use the eitire multistatic matrix but only its (Uagonal elements Ki,i and 
is, thus, inherently inferior to the more general schemes, such as tim^reversal imaging, that 
Employ the entire matrix. 

2.1    Born Approximation 
In many cases of mterest the effects of the targets on the incident wave field tPj are negligible 
so that XPJ is, to a good apiiroximation, the wave field that is ger erated by the j'th antenna 
in the background medium without any targets being present. This is called the^om 
approximation'' and is emj^loyed in the vast majority of unagiag and inversion schemes. 

4More precisely, this is called the distorted Bom approximaUon since .he background medium is not 
required to be constant. Howevet, we wUl interpret the Born approximation wit ain this more geneml context 
and not differentiate between uniform (constant) and non-uniform backgrounds except when noted. 



Another simplification resultsin cases where the sensor elements (antennas) axe sm^ relaJbive 
to^e wavekngth. In this casfe the incident waves Vi axe proportional to the Green functions; 

ie ' 

where C. is a constant (possi^y frequency dependent) that we wUl take to be tmity and R? 
Tthe trLsmitter element lociation. There is no loss of generality m making this a^^niption 
since all sensor array constants can be easily included in the general formalism. Under this 
assmnption, and within the Wn approximation, the multistatic response matric defined m 

Eq.(4) assumes the form 

M    . 
K{u)) = Y^    (frgr{rMOm{r,oj)gJ{T,<.) (5) 

where Qr is the Green function vector associated with the rece: ver array and defined in 

Eq.(3a) and ^    ^ ^/ \^/      MT /a\ 
ffe(r,a;) = [G(r,R*,w),G(r,R4,a;),---,G(r>Rk.^)] . f^) 

is the Green function vector iassociated with the transmitter array. Physically, each element 
of gt is generated by a transiiitter antenna point and propagates fiom that transmitter pomt 
into the target region while ^r is generated by a target scattering point and propagates from 
that target scattering point into the receiving sensor array. This is illustrated m figure 3 

FVom this point on we ^kll employ Eq.(5) as our working definition of the multistatic 
response matrbc. Thus, we l(vm assume that the (distorted wave) ISom approximation can 
be employed and that the Incident wave fields generated from ths transmitter array are 
the background Green functions. This second assumption is done only for convenience and 
can easily be removed. For ^the sake of ease of notation we will ciso suppress the frequency 
variable u in all of the following development with the understanding that dl equations are 
in the frequency domain at frequency u). 

Finally, we emphasize that although we have made the Bom approximation we have not 
required that the Green functions obey a reciprocity condition. Fbr example, even if the 
transmitters and receivers ate co- located (as is presently envisioned for Tech-Sat) we do not 

require that 
G(r.R5,a;) = G(R5,r,a;). 

Thus, the formulation presented here can be employed in both reciprocal and non-reciprocal 
backgrounds as well as in c^ses where the transmit and receive arrays are non-co-located. 

2.2    Time-reversal Imaging 
In the general case where all of the transmitters are simultaneously activated the data mea^ 
sured along the receiver arrjay are given by an expression of the form 

V = Ke 



where v = v{oj) is the Uneax axray of output voltages, viewed as an Nr dimensional column 
vector, measured at the receiver array terminals, e = e{u) is the Nt dimensional column 
vector of applied excitations to the set of transmitting antennas, and K is the Nr x Nt 
multistatic matrix. As mentioned earlier we will not explicitly display the frequency variable 
(j in subsequent equations. In the current theory of time-reversal imaging the object profiles 
Om(r) characterizing the targets are assumed to be disjoint profiles, each centered at a spatial 
location Xm and each having an eflFective size that is small relative to the wavelength; i.e.,   . 

Om{r) = Om{r-Xm). (7) 

The goal of time-reversal imaging is then to estimate the location X^ and strength of each 
scatterer. K we substitute Eq.(7) into Eq.(5) we obtain 

M 

K   =   Y,     d^rgr{r)0m{r-X^)9T{r) 

M 

«     Y^rmgr{Xm)gJ{Xm) (8) 
m=l 

where 
= Jd'rOm{r) (9) 

and where we have made use of the assmnption that the targets are small relative to the 
wavelength. The quantities r^ thus represent effective reflection coefficients for the targets 
and the goal of time-reversal imaging is then to estimate these reflection coefficients as well 
as the target locations X„i. 

2.3    Transmitter and Receiver Array Point Spread Functions 
Classical coherent imaging firom arrays is performed by back propagating a coherent wave 
that is measured across the array into the space from which it propagated. If tp{W) denotes 
such a wave measured along the receiver array then the back propagation of V* is defined 
mathematically via 

x(r) = EG*(r,RpV'{R.p (10) 

where x ^ thi^ back propagated wave and ^(Rp the measured coherent wave across the 
receiver array. The back propagated wave x(r) is the "best" estimate of the measured 
coherent wave that can be deduced from the measured data. 

Now asstune that the incident coherent wave to the receiver is the Green ftmction 
G(W,X) resultmg from a source location at X. We then find usmg Eq.(lO) that the back 



propagated field corresponding to the measured Green function is 

Hr{r,X)   =   YlG*{r,R^)Gm,X) 
3=1 

=    9Ur)9r{X). (11) 

The back propagated field Hr is a. function both of the field point at which it is evaluated 
as well as the source point location X and is the best image of the source point that can be 
formed from measurement of the Green function across the receiver array. This quantity is 
called the receiver array coherent point spread function (PSF). In a similar fashion one can 
define the transmitter array PSF as 

Htir,X)= 9t{T)gt{X). (12) 

We will not digress into the importance and use of the above PSF's at this time but will 
shortly encoimter both of these quantities in connection with time-reversal imaging. 

2.4    SVD of the multistatic Matrix 
The theory of computational time-reversal imaging depends on the abihty to perform a 
singular value decomposition (SVD) of the multistatic data matrix K. In particular, we 
consider the singular system 

K:    C^'-^C^-^     Kcj^ajVj (13a) 

K^:     C^r^C^*    K^Vj = (Xjej (13b) 

where j labels the singular system ej,Vj,<rj. The normal equations for this system are 

K^Kej = <T]ej, (14a) 

KK\ = (T]VJ. (14b) 

The singular vectors {ej}f^i are orthonormal and span the space C^* while the singular 
vectors {vj}j^i axe orthonormal and span the space C^". There are a total of min {Nt, Nr) 
singular values <TJ > 0. 

In the usual theory of time-reversal imaging [1, 2] where the transmit and receive arrays 
are coincident the Nt x Nt matrix 

T = K^K (15) 

is the well-known time-reversal matrix. It is seen that in the more general theory developed 
here that there are, in fact, two time reversal matrices Ti = K^K as well as Ta = KK^. Ti 
can be considered to be a "conventional" time reversal matrix for a single coincident sensor 
array ideritical to the transmit array and T-i can be considered to be a "conventional" time 
reversal matrix for a single coincident sensor array identical to the receive array. 



If we substitute the expression for the K matrix given in Eq.(8) into Eqs.(13a) and (16b) 
we obtain 

M 

X) Tm^r(Xr„)pnXm)ej = OjV^ (16a) 

M 

Y.''*m9*t{^n.)9l0^)vi ^ o^ej (16b) 

m=l 

It follows from the above equations that the singular vectors Vj having non-zero singular 
values are linear combinations of the receiver array Green function vectors ffr(X„,) while 
the singular vectors Cj are linear combinations of the complex conjugates of the transmitter 
array Green fimction vectors gti^m)- If we couple these observations with the fact that 
the transmit and receiver array Green function vectors are linearly independent [A, 5] we 
conclude that the vector space spanned by the transmit (receive) Green function vectors is 
identical to the vector space spanned by the singular vectors Cj (vj) having non-zero singular 
values (Xj. These conclusions form the basis for the MUSIC algorithm discvissed below. 

2.5    Well-resolved Teirgets 
An important special case occurs when the two sets of Green function vectors are orthogonal; 
i.e., when the following two equations are satisfied: 

gl{X^)gr{Xm') = \\gr{Xm)\?Sm,m' (ITa) 
gUX,n)9t{X^') = MXm)\?^m,m' (17b) 

where Sm,m' is the Kronecker delta function and 

WgriX^W     =    d(^m)griXm) 
WgriXmW    =    5j(Xjp.(Xj 

are the squared norms of the Green function vectors evaluated at the target point Xm- If 
Eq.(17a) holds then we say that the targets are well resolved by the receiver array while if 
Eq.(17b) holds we say that the targets are well resolved by the transmitter array. When both 
equations hold then the targets are well resolved with respect to both the transmitter and 
receiver arrays. 

The rational for the above terminology is apparent if we simply note that the inner 
products in Eqs.(17a) and (17b) are, respectively, the PSF's HriXmyXm') and Ht{Xm,Xm')- 
Thus, for example, the inner product gl{Xm)gr{X.m>) is the image of a point target located at 
Xm' formed at point Xm by the receiver (receiver) array. An entirely analogous interpretation 
can be given the inner product gt{Xm)gt{Xm')] i-e-, as the image of a point target located 
at Xm' formed at point Xm by the transmitter array. The case of well resolved targets thus 
corresponds to the case where the targets are sufficiently well separated such that the PSF of 
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either the transmitter or receiver axray does not significantly overlap any target other than 
the one on which it is focused. 

For the cliass of targets that are well-resolved by both the transmit and receive array 
both Eqs.(17a) and (17b) hold. In this case it is easy to show that the singular system 
{ej,Vj,aj > 0} can be related in a one-to-one manner with the M < min {Nt,Nr) isolated 
targets. Indeed, it follows at once from the orthogonality of the Green function vectors that 
the singular vectors having non-zero singular values for well-resolved targets are given by 

.        gt(Xj) ,     . 

gr(Xj) 

(18c) 

where j = 1,2,..., M. Moreover, the non-zero singular values (TJ are given by 

crj = \rA\\9t{Xj)\\\\gr{Xj)\\ (19) 

We conclude that the scatterer strengths are computed directly from the singular values which, 
in turn, are readily computed from the measm:ed multistatic data matrix K. Moreover, the 
singular vectors give the location of the targets. Indeed, the coherent image formed using 
the singular vector Cj will generate the PSF of the transmitter array centered at X,- while 
the coherent image formed using the singular vector Vj wiU generate the PSF of the receiver 
array centered at X_,. 

2.6    Non-well resolved Targets and MUSIC 

One of the primary accomplishments of the Tech-Sat project has been the incorporation 
of MUSIC into computational time-reversal. MUSIC allows non-well resolved targets to be 
detected and located. The general idea is that although the set of transmit and receive 
Green function vectors are not orthogonal in the general non-well resolved case they are still 
linearly independent (This result is proven in [4]) and, as indicated earlier, this impUes that 
ffte vector space spanned by the transmit (receive) Green function vectors is identical to the 
vector space spanned by the singular vectors Sj (vj) having non-zero singular values aj. It 
then follows that 

Y,e]gt{Xm) = 0 (20a) 
lTj=0 

J2vUr{Xm)=0 (20b) 
<7,=0 

where the siuns are over all singular vectors having zero singular value and where X^ is any 
target location. It is important to note that the above equations hold independent of whether 



the targets are well resolved or not. The orthogonality conditions given in Eqs.(20) is the 
underlying key to MUSIC. In particular, we introduce the steering vectors 

^,(Xp,a;) = [G(Xp,Rl,o;),G(Xp,R4,a;),--- ,G(Xp,R5^,,a;)f, (21a) 

gr{Xp,u) = [G(R![,Xp,a;),G(R5,Xp,a;),--- ,G(R^^,Xp,a;)f (21b) 

where Xp is a test target location vector arid can assiune any value within the region occupied 
by the targets. It then follows that when the test target location vector coincides with an 
actual target location; i.e., when Xp = X„i then 

J2 vjgriXp) = 0. 
<rj=0 

MUSIC uses the pseudo-spectrum 

^^^^ ^ I E.,.o[ek(Xp) + v}gr{X,W ^^^^ 

to determine the target locations. It follows from the analysis presented above that V{Xp) 
will become large (infinity in the ideal case) at all target locations (Xp = X^) and will 
be small otherwise. A number of computer simulated examples of the use of the pseudo- 
spectrum in the special case where the transmit and receive arrays are co-located are pre- 
sented in reference [4]. The case of non-co-located arrays are treated m reference [5]. We 
present sunulations for the case of co-located arrays in the followmg section. 

3    Near Field Gomputer Simulations for Tech Sat 21 

We performed a niunber of computer simulations to test and evaluate the computational 
time reversal algorithms developed during the course of the project and outlined above. The 
simplest of these sunulations were performed for the case of near field unaging where the 
objects were located in the near vicinity of the phased array. Although this is not directly 
relevant to Tech Sat it is relevant to a number of Air Force and DOD applications such 
as groimd imaging from Unmanned Aerial Vehicles (UAV's). These initial simulations also 
serve as a test of the basic performance of the algorithms in an ideahzed setting. To avoid 
discontinuities in the presentation and to avoid confusion we have included all simulation 
figures at the very end of the document. 

The simulations were coded using MATLAB and assume a two-dimensional geometry 
where the sensor elements are line sources and the targets are line targets all embedded in 
a homogeneous backgroimd and perpendicular to a single plane and all multiple scattering 
is ignored.   Prom a mathematical point of view we can consider the targets iand sensor 
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elements as points in the two-dimensional space of the plane; i.e., as point locations in i?^. 
In the simulations we have Umited our attention to the case of co-located arrays which are 
currently envisioned for Tech Sat. In these cases there is only one Green function vector 
which we can take to be the transmitter Green ftmction vector Qr defined in Eq.(3a). In the 
H^ homogeneous backgroimd case the appropriate Green function G(r,r') is( given by 

G(r,r') = ^^o(fc|r-r'|) (23) 

where HQ is the zero order Hankel function of the first kind. The Green function vectors are 
then given by 

= [Ho{k\Ri - X^l), Ho{k\R2 - X^l),..., Ho{k\KN - X^|)]^, (24) 

where we have dropped the unessential constant —i/4 and where we have denoted the sensor 
element locations of the phased array by Rj, / = 1,2, • • • , JV. Note that we use the shorthand 
notation gm to denote the array Green fimction vectors Qr evaluated at the scatterer locations 
X^; i.e., Qm = ^r(Xm)- In terms of the Qr the multistatic response matrix (MSR) K is given 
by 

K = Y.rmgm9^. (25) 

In the simulations we employed a basic image space which is a rectangular grid repre- 
senting a section of the x, z plane with z being depth (pointing down) and x lateral location 
(with positive x directed to the right). All dimensions are relative to the wavelength which 
is taken to be unity. The simulations used an image grid spacing parameter Sx = Sz equal 
to a quarter wavelength Sx = A/4 and an uniformly spaced linear array of from five to 
nine elements (depending on the simulation) located along the line z = 0 and with adjacent 
sensor element spacing varying firom a half-wavelength to up to sixteen wavelengths, again 
depending on the simulation. We also used firom two to foiu: targets located at the same 
z (depth) coordinate (sixteen wavelengths) but with variable spacing along the x direction. 
In some of the simulations we added additive noise to the computed multistatic response 
matrix (MSR matrix) K according to the model 

K = K + Ae"'^^ (26) 

where K is the noisy MSR matrix, -A is an independent Gaussian variable with variance 
proportional to the peak ampfitude of the ideal (computed) MSR matrix K and W^ is an 
independent Gaussian variable with unit variance. Thus, the noise model includes both 
amphtude and phase fluctuations. All parameters used in any given example are listed in 
the figure captions. 

11 



3.1 Computing the multistatic Response Matrix 

The multistatic response matrix K is computed using Eq.(25) with the Qm equal to the 
receiver Green function vectors Qr evaluated at r = X^. As an initial example we computed 
the MSR matrix for the case of two targets (M = 2) both located at a depth of sixteen 
wavelengths for a linear sensor array of nine elements that was centered over the image grid. 
In this first simulation we used a half-wavelength spacing for the sensor elements, no additive 
noise, and a target separation of eight wavelengths along the x direction, with one target 
located exactly at the mid-pomt of the array and the other displaced by eight wavelengths 
in the positive x direction. The scattering strengths Tm of the two targets were equal (to 
tmity). The Coherent Point Spread Function (CPSF) of a regularly spaced sensor array of 
length a will have an effective lateral width 5 at distance z of approximately 

6 = zX/a 

which using z = 16A, a = 4A yields 8 = 4A. This is equal to half of the spacing between the 
two targets so this example corresponds to two well-resolved targets. 

3.2 Computing the Eigenvalues and Eigenvectors of the time- 
reversal matrix 

The time-reversal matrix T is computed directly from the MSR matrix according to the 
equation 

mm' 

= Y:Y:^m,m'9*m9L (27) 
m    m' 

where 
Kn,m' = TrnTrn'OLdm'- 

We used a standard eigenvector/eigenvalue solver in MATLAB to compute the eigenvalues 
and eigenvectors of the time-reversal matrix T in the simulation. Since there are two targets 
there are two non-zero eigenvalues with associated signal space eigenvectors. We show in 
Fig. 5 a plot of the eigenvalues and unwrapped phase of the eigenvectors computed from 
the MSR matrix and for the simulation parameters given above. We see for this case that 
there are two non-zero eigenvalues corresponding to the two well resolved targets that are 
separated by eight wavelengths. We also show in the bottom figure the phase of the complex 
conjugate Green function vectors g^ which are seen to be nearly identical (to within an 
additive integral multiple of 27r) to the phase of the two eigenvectors. This is in agreement 
with the fact that the complex conjugate of the Green function vectors are proportional to 
the eigenvectdrs of the time-reversal matrix in the case of well-resolved targets [4]. We show 
only the phase of these quantities since the phase of the field is much more important than 
ampUtude (intensity) in imaging and target location estimation. 
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3.3 Forming the conventional time-reversal image 

The time-reversal image is formed using Eq.(lO). For the well resolved target case the image 
field ^m(r) is proportional to the Coherent Point Spread Function (CPSF) of the sensor 
array. This is well approximated in the first simulation where the targets are separated 
by 8A. The magnitude of the focused fields from the two eigenvectors for this case (whose 
phases are shown in Fig. 5) are shown in Fig. 6. We have superimposed an X at the actual 
target locations to show that the image fields tend to peak in the vicinity of the targets. 
We have also shown for comparison the magnitude of the fields generated from the complex 
conjugate Green function vectors ^J^ which are the eigenvectors in the ideal case where the 
targets are perfectly resolved and whose phase distributions along the sensor elements are 
also shown in Fig. 5. It is clear firom the figure that the image intensities for both the imaged 
eigenvectors and the imaged Green function vectors are very close as can also be inferred 
from the fact that their phase distributions along the sensor elements are almost identical 
as shown in Fig. 5. 

It is clear fi:om Fig. 6 that the images generated from the eigenvectors of the time- 
reversal matrix provide a good indicator of the target locations. The reasons for this are that 
the targets are well-resolved so that their separate image fields do not overlap significantly. 
However, we will see later examples where the targets are not well-resolved so that the images 
generated by the eigenvectors of the time-reversal matrix do not provide good indication of 
the target locations. Moreover, even in this example where the targets are well separated the 
depth resolution generated by the classical time-reversal images is not very good. Indeed, 
a close inspection of the images in Fig. 3 shows that the maximums do not occur at the 
target locations but rather in the immediate vicinity of the array (see gray scale bar). The 
reason for this is that, as was mentioned earUer, the longitudinal resolution associated with 
the CPSF is much less than is the horizontal resolution: a fact that is clear fironi Fig. 6. 

3.4 Computing the Pseudo-spectrum 

The MUSIC algorithm was implemented using Eq.(22) with the denominator computed using 
two different methods that are described in [4]. Note that in this case where the transmitters 
and receivers are co-located that the pseudo-spectrmn reduces to the simplified form 

^(Xp) = 
.E.,=oieki' 

where Qp = pm|m=p = 9r0^) with Xp equal to the location of a test target. In all of 
the simulations the two methods of computing the denominator gave essentially equivalent 
results so we only show the result obtained by the direct method of projecting Qp onto the 
noise subspace. In the first simulation discussed so far the targets are well-resolved so that 
each eigenvector is associated with one of the two targets and the conventional method of 
imaging the eigenvectors illustrated in Fig. 6 gives good indication of target location, at least 
as regards the lateral (x) location. The computed pseudo-spectrum for this example is shown 

13 



in Fig. 7 while Fig. 8 shows the pseudo-spectrum superposed on top of the conventional time- 
reversal images. Also show in text are the estimates of target location obtained by simply 
finding the maximinn of the pseudo-spectrum. As expected in the absence of noise perfect 
target location estimation is obtained. 

3.5    Further Examples 

As a second example we repeated the first simulation but added noise equal to 20% of 
the peak value of the magnitude of the (noise free) MSR matrix and also increased the 
spacing between adjacent sensor elements to two wavelengths. In Fig. 9 we show the plot 
of the eigenvalues as well as the phase of the eigenvectors and complex conjugate Green 
functions. Note that the noise has the eflfect of adding non-zero eigenvalues, beyond the 
first two dominant ones. Also note that the phases of the conjugate Green functions are 
no longer equal to the phases of the first two eigenvectors due to the effect of the increased 
sensor separation and also the additive noise. In Fig. 10 we show the images generated from 
the two dominant eigenvectors together with those generated using the complex conjugate 
Green function vectors. It is seen that these images possess a compUcated spatial structure 
with multiple lobes making it difficult to located the two targets. In Fig. 11 we show the 
pseudo-spectrum which, although noisy, returns exact estimates of the target locations. 

4    Tech Sat Simulations 
The Tech-Sat simulations included the presence of the ionosphere and are also performed 
in the far field of the targets. Both of these aspects of the problem compUcate the imaging 
problem and the simulations of the time-reversal based imaging algorithms discussed in the 
report. As in the near field simulations presented in the previous section we consider the 
simplified case of two space dimensions where the horizontal x axis is parallel to the locally 
flat earth stirface and the vertical z axis has its origin at a height h above the earth with 
positive z pointing downward. A phased antenna array consisting of N antenna elements 
each with a uniform aperture of diameter d is assumed to be deployed along the x axis at 
2 = 0 (at a height h above the earth surface). Intervening between the phased gmtenna array 
and the earth is the ionosphere which is modeled as a thin phase screen located at altitude 
/ above the earth. The thin phase screen model is illustrated in fig. 4. The objective of the 
simulation is to illustrate the use of the time-reversal based processing schemes outlined in 
the previous sections of the report for locating one or more moving ground targets (MGT) 
fi-om the multistatic data matrix acquired at a single frequency by the orbiting array. We will 
assume that all data collection is performed over a short period of time in which everything 
is "frozen" so that variations in antenna location, target location, ionosphere parameters, 
etc. can be ignored. The assumption of a frozen backgroimd and data acquisition sjrstem is 
reasonable within the context of Tech Sat due to the plaimed use of frequency multiplexing 
in the acquisition of the multistatic data matrix. Thus, in particular, this quantity will be 
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obtained by simultaneously exciting orthogonal signals at all the transmitter locations and 
not by sequentially exciting the transmitter elements in time. 

We will take the nominal altitude h of the Tech Sat array to be 400 kilometers (km) and 
place the thin phase screen model of the ionosphere at I = h/2 = 200 km. The wavelength 
of the radiation is taken to be 1 cm=10~^ m and we will assume that the array consists 
oi N = 5 antennas aUgned along the x axis at -z = 0 (height h) and each of which has an 
effective aperture diameter of one meter. Due to the large propagation distances and short 
wavelength we can employ the following Ftaunhofer approximation for the field radiated 
above the ionosphere by an antenna element located &t Qk = (x = Xk, z = 0): 

*(r,a,) = y5f!i^e»^(--*)'sinc [^(x - Xk)], (28a) 

where Jbo = 27r/A is the free space wavenumber and 

. .      sinnx 
smc (x) =  

TTX 

is the sine function. The field O is radiated from each antenna element down to the thin 
phase screen where it is spatially modulated by a transmission function of the general form 

r(x)=e**'''"''"^i^"^ 

where the amplitude AQ and period Lo are parameters of the thin phase screen model. In 
the simulations we took Ao== 1 and Lo = 30 m. More general models for the phase screen 
can be employed and are easily incorporated into the Matlab code which is available from 
the author's web site. 

The thin phase screen transmission function T{x) multiplies the antenna field $(r, 01*) 
at 2 = / = V2=200 m to generate the boundary value field x(r,otk) = T(x)^{r,ak) which 
is then propagated to ground using a discretized Kirchoff approximation 

$(r,a.) = Sx Y, X(ri,a;.)y5^^^^^e^^(-^^)%inc [^(x - xj)] (28b) 

where x(rj5«it) are the sample values of the boundary value field at the sample points 
rj = {jSx, l),Az = z-ris the propagation distance from the phase screen and the maximum 
index J is selected large enough to encompass the major lobe of the radiation pattern from 
each antenna element. Eq.(28b) c€in be regarded to be a superposition of the fields generated 
by a linear array of adjacent small antenna elements having diameters Sx and boundary value 
fields x(rj, Ofc). In the simulations we took <Sx = rf=l m since the distance of the phase screen 
from the phased array was sufficiently large that this value of Sx was well below the required 
Nyquist sampling interval. 

$(r,afc) is the total field radiated by an anteima centered at ctk in the presence of the 
thin phase screen^. We will also have need of the wavefield *(aA;,x„i) which is the output 

*We assume that reflections by the ionosphere can be ignored or time gated out by the Tech Sat antenna 
elements so that the reflected wave component of * is effectively zero. 
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from the k antenna element due to a point source located on the ground at x^- This field 
is computed using the model Eq.(28a) for the up going wave from a source point at x^ and 
then the KirchoflF model Eq.(28b) for propagation up to the antenna element located at otk- 
However, due to reciprocity, it is easily verified that® 

<if{<Xk,^)=Hxm,ak). (29) 

The field ^{r,ak) plays the role of the Green fimction G(r,0£jfc).' In place of the Green 
function vector we now have the "antenna vector" 

<^(r) = Mr, «x), $(r, aa), • • • , ^(r, «A^)]^, (30a) 

where ^ is defined in Eqs.(28). The multistatic data matrix is given by 

M 

/^ = ^r^,^(x^)0^(x^), (30b) 

which follows at once from the reciprocity condition Eq.(29). 
In some of the simulations uncorrelated noise was added to the output from the antenna 

elements according to the model 

Kj^k = Kj,k + Ai exp ixj,k 

where K is the noisy matrix and Ai is a real constant which we took to be either zero 
or 0.1 times the maximum value of the noise free K matrix. The quantity xj^k is a zero 
mean, tmcorrelated and imiformly distributed random matrix over [—7r,7r]. We note that 
the assumption of point targets is very reasonable in the current apphcation in view of the 
very large propagation distances involved even though the wavelength is quite small. In 
particular, the incident field ^{r,ak) from each antenna element evaluated on the ground 
will be effectively plane over any reasonably sized groxmd vehicle with the result that the 
point scattering model underlying the analysis presented in the paper should be valid. 

4.1    Simulation Results 

The Matlab code apOl.m essentially tests the forward simulation model Eqs.(28). Among 
other computations, this code computes the field intensity over the earth surface (z=400 
km) with and without the presence of the phase screen. An example is presented in fig. 12 
which shows the field intensity at the top of the phase screen as well as over the ground 
with and without the phase screen being present. The parameter values for this simulation, 
and all other simulation examples, are given in Table 1. In this example we have used a 
imiform linear array of iV = 5 elements equally spaced over a half kilometer and all of which 

*In all the Matlab codes discussed later and used in the simulations the up going wave field * is actually 
computed using Eqs.(28) and the reciprocity condition can, in fact, be verified using these codes. 
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were simultaneoiisly excited by rniit amplitude, in-phase pulses to simulate a plane wave 
propagating parallel to the z axis. The middle and top plots in the figure clearly show the 
grating lobes that are generated for this case. The grating lobe periods are given in the table 
where the first number is for the top of the phase screen and the second for the earth Surface. 
It is also apparent from the bottom plot that the grating lobes are randomized due to the 
presence of the phase screen. The code apOl.m can also be used to test the accuracy of the 
simple Kirchoff model Eq.(28b) for generating the incident field below the phase screen. In 
particular, the reader can verify using the code that the field ampUtude on the earth surface 
obtained using the direct model Eq.(28a) with z = 400 km. agrees closely with the field 
amphtude computed using the composite model Eq.(28b) with the phase screen amplitude 
AQ set equal to zero; i.e., with T{x) = 1. 

The code ap02.m allows the user to use up to five targets distributed over a half kilometer 
on the earth surface and computes the multistatic data matrix K and the eigenvectors and 
eigenvalues of the time-reversal matrix T = K*K. These eigenvectors are equal to the 
singular vectors Vj = Uj that are used in the computation of the classical time-reversal 
image field via the process of back propagation as discussed earUer in the report. For the 
case of a single target or a set of 'Veil resolved targets" the time-reversed image field is the 
PSF of the antenna array centered at the target(s) locations. As discussed earUer the PSF 
yields the "best" image of the target location that can be generated from the observed data 
(the K matrix). 

We show in fig. 13 plots of the intensity of the time-reversed field over the groimd for a 
single target located at the center a;,„ = 0 of a half kilometer of image space using the same 
set of parameters employed in the first example. The figure shows the results for three cases: 
(i) when no phase screen is present, (ii) when a phase screen is present and (iii) when a phase 
screen is present but the image field is generated by using the free space model Eq.(28a). 
All three cases were computed by first generating the K matrix and then back propagating 
the eigenvector corresponding to the largest eigenvalue. The third case corresponds to using 
the firee space antenna vector generated using the free space propagation model Eq.(28a) 
with z = 400 km in the computation of the image field and is of interest due to the fact 
that an adequate model of the thin phase screen (the background Green function) may not 
be available. Thus, although the exact eigenvector of the K matrix can be computed the 
step of image formation via back propagation may not be exactly implementable due to 
imperfect knowledge of the backgroimd Green function. As indicated in the figure the use 
of fi"ee space back propagation shifts the location of the target but does, nevertheless, give a 
rough estimate of its position. 

We show in fig. 14 results for the case of an irregular (unstructured) antenna array having 
center locations as indicated in Table 1. We have again used a single target located at the 
center Xm = 0 and again show the three cases of no phase screen, phase screen, and phase 
screen data but free space back propagation. Note the elongated period in the grating lobe 
structure compared with that displayed in fig 13 due to the smaller minimum separation of 
antenna elements of the phased array. 

It is apparent fi:om figures 13 and 14 that the conventional time reversed image field yields 
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good estimates of the target location in the absence of noise and clutter if the background 
Green function (or antenna vector) is known and fair estimates if this quantity is not known 
and free space back propagation is employed. In fig 15 we show the effect of multiple targets 
(clutter) on the image formation process. This example was generated with a phase screen 
present using the code apOS.m and the parameters given in Table 1. The example used three 
targets having equal scattermg strengths Tm = l located at Xm = -200,0, and +100 meters 
and illustrates the difficulty of associating individual targets from the raw back propagated 
images even in the absence of additive noise. The problem is exacerbated in the absence of 
the phase screen where the grating lobes make target location even more difficult. 

4.2    MUSIC 

The Matlab code apO^.m implements the MUSIC algorithm. We appfied this code to the 
same target and antenna geometry employed in the example given in fig. 15 and present the 
results in figs. 16 and 17. The results shown in fig. 16 correspond to no phase screen with the 
top plot being the pseudo-spectrum for the no noise case and the bottom for an additive noise 
having an amplitude coefficient -Ai = .1 corresponding to a signal to noise ratio xaaxK/vaasW 
of ten where W is the additive noise term. This same noise amphtude and signal to noise 
ratio was employed in all of the simulations having noise present. As mentioned in our 
discussion on grating lobes the multistatic data matrix is not exactly periodic due to its 
dependence on the square x^ of the target's location so that in the absence of noise it should 
be possible to perfectly locate a target even in the presence of these lobes. Although this is 
not easily accomplished by direct viewing of the classical time-reversed (back propagated) 
image fields the target locations are immediately and automatically generated by the pseudo- 
spectrum as is apparent from the top plot in fig. 16. However, when even a small amount 
of noise is added a nimaber of false peaks in the pseudo-spectriun appear that are due both 
to additional clutter like singular vectors in the noise subspace M as well as to the basic 
ill-posedness of the inverse problem in the presence of the grating lobes. This is illustrated 
in the bottom of the figure where a small amoimt of additive noise with the noise amplitude 
coefficient Ai = .1 has been added. 

In fig. 17 we show the results obtained for the same set of simulation parameters used for 
fig. 16 but with a phase screen present. The randomizing effect of the presence of the phase 
screen on the grating lobes is apparent from the bottom plot which, on comparison, with the 
bottom plot of fig. 17 is seen to yield much more robust estimates of the target locations. We 
performed the same simulation but used the free space steering vector and show the results 
in fig. 18. It is seen that the free space steering vector does not give accurate estimates of 
target location but does, nevertheless yield estimates that are in the general ball park of the 
correct locations. 

The final example presented in fig. 19 is of two close targets in the presence of clutter 
and additive noise. This example is important since actual field data will contain a number 
of clutter targets as well as noise. Both examples assumed the presence of a phase screen 
with the top plot corresponding to the no noise case while the bottom plot included an 
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additive noise with noise amplitude Ai = .1. The two plots clearly show the robustness of 
the MUSIC algorithm and also indicate its abiUty to "super-resolve" close targets that would 
not be resolvable using standard field back propagation. Indeed, the two dominant targets 
in this example are separated by five meters which is roughly equal to the classical resolution 
A = A/1/.5 = 4 m of a densely packed, uniform antenna array one-half kilometer in length. 

5    Summary 
This project had as its primary goal the development of theory and associated algorithms for 
locating ground based targets using the proposed Tech sat phased array antenna system. To 
this end a theory based on classical time-reversal imaging [1, 2] was developed and coded in 
Matlab based algorithms. The basic theory has been submitted for publication [4, 5, 6] and 
is summarized in this final project report. The developed theory is appHcable to Tech Sat as 
well as to general problems that require imaging of targets obscmred by an inhomogeneous 
background medimn such as the ionosphere or fohage. 

The theory and algorithms developed in the project assume measurement of the mtdti- 
static data matrix K = {-Kj-,fc} at a single temporal frequency w by a phased array antenna 
and uses the SVD of this matrix as well as the Green function of the background medimn to 
generate images of the target locations. Two methods of image generation from the multi- 
static data were developed and tested in computer simulations: (i) image formation via the 
classical method of time-reversal (or field back propagation) imaging [2] and (ii) use of the 
MUSIC pseudo-spectriun to form the images [4, 5,6]. Both of these methods use the singular 
vectors in the SVD of the K matrix where, however, the classical time-reversal scheme uses 
those vectors associated to the dominant singular values while the MUSIC method employs 
those singular vectors associated to the small singular values. It was shown and demon- 
strated via computer simulation that the classical method works well in cases of a few well 
separated targets (well resolved targets) but fails if the number of targets is large or they 
are closely located. On the other-hand the MUSIC method works independent of these as- 
sumptions and returns "super-resolution" estimates of the target location that are far better 
than would be obtained via the classical time-reversal based imaging method. 

The ciuTent final project report included a discussion of the effects of grating lobes, clutter 
and additive noise on the image formation process. It was argued and later demonstrated 
in the computer simulations that the presence of a inhomogeneous medimn between the 
phased axray antenna and the targets can significantly reduce the grating lobes and increase 
the performance of the algorithms. Although earfier studies [7] have shown that the presence 
of such a background can increase the resolution of the time-reversal imaging process the 
effect demonstrated here appears to be different and is simply due to the randomizing of the 
grating lobes of the antenna radiation pattern and not due to an effective increase of the 
aperture of the antenna array. A simulation of the performance of the MUSIC algorithm 
in the presence of two adjacent and dominant targets and a nimiber of clutter targets and 
additive noise was presented and illustrated the robustness and super-resolution ability of 
the algorithm. 
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Both the classical time-reversal imaging scheme as well as the MUSIC algorithm require 
knowledge of the background Green function. In the Tech Sat simulations the background 
was modeled as a thin phase screen and simulations were performed for cases where this 
background was known and also for cases where the free space background Green functions 
were employed in the image formation process. The simtdations indicate that excellent results 
are obtained when the correct Green function is employed in the image formation process 
but that performance degraded in some cases significantly when the back propagation or 
MUSIC algorithms were implemented using the free space Green function. An important 
avenue for research is the estimation of the background from the multistatic data and also 
from ancillary data obtained using, for example, the phased array antenna but other emission 
sources such as are employed in Silent Sentry and similar projects. Within the context of the 
Tech Sat project we mention, for example, that the reflections off the ionosphere which are 
assmned time-gated out in the simulations presented here can be used to form an estimate of 
the index of refraction distribution of this medium which can then be employed to generate 
an estimated background Green function. An inversion algorithm based on the distorted 
wave Born approximation has been recently developed [8] for precisely such cases and will 
be integrated into the time-reversal based schemes discussed here in the future. 
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6    Table 

figure code (Xk in m. Xm in m. Tm L 
1 apOl.m -206,-104,-1,101,203 - - 20, 40 
2 ap02.m -206,-104,-1,101,203 0 1 40 
3 ap02.m -155,-104,50,75,153 0 1 156 
4 apOS.m -155,-104,50,75,153 -201,-1,99 1,1,1 156 
5 ap04.m -155,-104,50,75,153 -201,-1,99 1,1,1 156 
6 ap04.m -155,-104,50,75,153 -201,-1,99 1,1,1 156 
7 ap04.m -155,-104,50,75,153 -201,-1,99 1,1,1 156 
8 ap04.m -155,-104,50,75,153 -201,-126,-101,-96,-1,3,49,99 .l,.l,l,l,.l,.l,.l,.l,.l,.l 156 

Table 1: Parameters used in the simulations 
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8    Figures 

Unstructured Phased Array 

• Centimeter wavelength 
• 5 to 15 independent antennas 
• kilometer or more deployment radius 
• multistatic data acquired 
• detection and tracking of MGT 

Clutter suppression performed using 
time-gating and doppler filtering 

Narrow frequency band 
Very large sparse 3D array 

Intervening ionosphere (multipath) 
MGT 

Figure 1: lilnstration of the Tech Sat phased array system for MGT detection and tracking 
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Goal: Reduce Ground Clutter 
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Figiire 2: Doppler and time-gating are used to reduce the size of the ground patch and thus 
reduce clutter. In this figure an exciting voltage 6^(0;) is applied to a transmitting antenna 
element and the reflected signal from the target generates the voltage Vj{u}) at a receiving 
element. This received voltage is input to a Doppler rejection filter to generate the clutter 
reduced signal Vj{u). 
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Transmitting antenna 

M 
Receiving antenna 

.   Down-going Green function vector 

\  »      A      I 9t{r,c^) = [G(r,Ri,a;),G(r,l4,a;),..- ,G(r,R*,.,a;)p 

Down-going fX       / ^\ 5r(r,a;) = [G(RJ,r,a;),G(R^,r,a;),.•• ,G(R^^,r,a;)f 

Up-going Green function vector 

Multi-Static Data Matrix 
M 

Up-going 
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Reflected upward pulse 

MGT located at X™ 
G{R^i,Xm,C^)Om{Xm,U;)GilCm,R*j,U}) 

Figure 3: Within the Born approximation the multistatic data matrix K can be expressed 
as the svmi of outer products of transmitter (down going) gt and receiver (up going) gr Green 
function vectors. The r^ are the effective target reflection coefficients. 
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Computer Simulation Model 
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Fresnel Approximation 

V2;^-^'      "    smc[-(a;-:r„)] 

Ionosphere Thin phase screen model 

Xo 

,27r 
T{x) = exp[i27r^o/(a^)];    f{x) = sin(—a;); 

Down-going wave 
No. 

t/_(r,r„) = 5xY:^T{xj)G{vj,Tn)G{v,Ti) 

>K        r^    ^''"^°' 
i=i 

going wave 
N„ 

C/+(r, r„) =SxY^ R{xj)U-{rj, r„)(7(r, TJ) 

Figure 4: A thin phase screen model is used to simulate the effect of the ionosphere. This 
model can also be the basis for a parameterized model for the backgroimd Green function 
vectors. In the figure the quantities T and R are the transmission and reflection coefficients 
of the thin phase screen model and, as a first approximation, are given by a sinusoidal model. 
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Figure 5: (Top) Plot of the magnitude of the eigenvalues of the time-reversal matrix. (Bot- 
tom) plots of the (real) phase of the two eigenvectors corresponding to the two non-zero 
eigenvalues (solid) and of the phase of the complex conjugate of the two Green function 
vectors (dashed). 
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time-reveisal green function image 
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Figure 6: (Left) Images generated by the two eigenvectors shown in Fig. 5 and (right) images 
generated by the complex conjugate Green function vectors shown in Fig. 5. The "X" on 
the images indicates the location of the targets. 
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Figure 7: The pseudo-spectrum computed for the simulation depicted in Fig. 6. The peak 
values of the pseudo-spectrum are given as text in the figure and indicate that exact results 
were obtained for both the x and z location estimates. 
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Figure 8: Contour plots of the time-reversal images shown in Fig. 6 on which are superposed 
the pseudo-spectrums shown in Fig. 7. 
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Figure 9: (Top) Plot of the magnitude of the eigenvalues of the time-reversal matrix. (Bot- 
tom) plots of the (real) phase of the two eigenvectors corresponding to the two non-zero 
eigenvalues (sohd) and of the phase of the complex conjugate of the two Green function 
vectors (dashed). 

31 



Ume-mefBal green kinction Image 
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Figure 10: (Left) Images generated by the two eigenvectors shown in Fig. 9 and (right) 
images generated by the complex conjugate Green function vectors shown in Fig. 9. The 
"X" on the images indicates the location of the targets. 
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Figure 11: The pseudo-spectrum computed for the simulation depicted in Fig. 10. The peak 
values of the pseudo-spectrmn are given as text in the figiure and indicate that exact results 
were obtained for both the x and z location estimates. 
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Figure 12: Plots of the field intensity over the phase screen (top), over the ground with no 
phase screen present (Doiddle) and over the ground with a phase screen present (bottom). 
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Figure 13: Plots of the intensity of the time-reversed field over the ground with no phase 
screen present, with phase screen present and with phase screen data but free space back 
propagation. 
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Figure 14: Sanie as for fig. 13 but with a different antenna geometry. Note the larger grating 
lobe period due to the ismaller minimuni separation between adjacent antenna elements. 
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Figure 15: Plots of the intensity of the time-reversed field over the ground with a phase 
scrieen present for the cases of three targets located at Xm = -200,0, and -1-100 meters. 
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Plot of the Pseudo-spectrum w(th no additive noise 
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Plot Of the Pseudo-spectrum with additive noise 
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Figure 16: Plots of the pseudo-spectrum corresponding to the same conditions and set of 
parameters used for the conventional time-reversal images presented in 15 but with no phase 
screen present. The top plot is the pseudo-spectrum without additive noise while the bottom 
had additive noise with a noise ampUtude Ai =0.1. 
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Plot of the Pseudo-spectrum with no additive noise 
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Plot of the Pseudo-spectrum with additive noise 
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Figure 17: Same as in fig. 16 but with a phase screen present. 
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Plot of the Pseudo-spectoim-using phase screen steering vector 
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Plot of the Pseudo-spectrum-using tree space steering vector 
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Figure 18: Plots of the noise free pseudo-spectrum corresponding to the same parameters 
used in fig. 17. The top plot is the pseudo-spectrum computed with the correct steering 
vector while the bottom plot uses the free space steering vector. 
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Plot of the Pseudo-spectrum with no additive noise 
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Plot of the Pseudo-spectmm with additive noise 
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Figure 19: Plots of the pseudo-spectrum resulting for two real targets and eight clutter 
targets. The top plot is the pseudo-spectrum for the no noise case while the bottom plot is 
the pseudo-spectrum for an additive noise with amplitude Ai =0.1. 
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